参数说明翻译
参数 | 描述 | 值类型 | 示例用法 |
---|---|---|---|
mirostat | 启用Mirostat采样以控制困惑度。(默认:0,0=禁用,1=Mirostat,2=Mirostat 2.0) | int | mirostat 0 |
mirostat_eta | 影响算法对生成文本反馈的响应速度。较低的学习率将导致调整较慢,而较高的学习率将使算法更敏感。(默认:0.1) | float | mirostat_eta 0.1 |
mirostat_tau | 控制输出的一致性和多样性之间的平衡。较低的值将导致更集中和一致的文本。(默认:5.0) | float | mirostat_tau 5.0 |
num_ctx | 设置用于生成下一个标记的上下文窗口的大小。(默认:2048) | int | num_ctx 4096 |
repeat_last_n | 设置模型回溯以防止重复的距离。(默认:64,0=禁用,-1=num_ctx) | int | repeat_last_n 64 |
repeat_penalty | 设置对重复的惩罚强度。较高的值(例如,1.5)将对重复进行更强烈的惩罚,而较低的值(例如,0.9)将更加宽松。(默认:1.1) | float | repeat_penalty 1.1 |
temperature | 模型的温度。增加温度将使模型更具创造性地回答。(默认:0.8) | float | temperature 0.7 |
seed | 设置生成时使用的随机数种子。将此设置为特定数字将使模型对相同的提示生成相同的文本。(默认:0) | int | seed 42 |
stop | 设置要使用的停止序列。当遇到此模式时,LLM将停止生成文本并返回。可以通过在模型文件中指定多个单独的stop参数来设置多个停止模式。 | string | stop “AI assistant:” |
tfs_z | 尾部自由采样用于减少输出中不太可能的标记的影响。较高的值(例如,2.0)将更多地减少影响,而值为1.0则禁用此设置。(默认:1) | float | tfs_z 1 |
num_predict | 生成文本时预测的最大标记数。(默认:128,-1=无限生成,-2=填充上下文) | int | num_predict 42 |
top_k | 减少生成无意义内容的概率。较高的值(例如,100)将给出更多样化的答案,而较低的值(例如,10)将更加保守。(默认:40) | int | top_k 40 |
top_p | 与top-k配合使用。较高的值(例如,0.95)将导致更多样化的文本,而较低的值(例如,0.5)将生成更集中和保守的文本。(默认:0.9) | float | top_p 0.9 |
min_p | top_p的替代方案,旨在确保质量和多样性的平衡。参数p表示考虑标记的最小概率,相对于最可能标记的概率。例如,当p=0.05且最可能的标记概率为0.9时,过滤掉值小于0.045的逻辑。(默认:0.0) | float | min_p 0.05 |
如何让Ollama中的DeepSeek运行最快
要让Ollama中的DeepSeek运行最快,可以从以下几个方面进行优化:
-
硬件资源优化:
- GPU加速:确保已经安装并配置好支持GPU加速的Python环境。对于DeepSeek模型而言,在启动命令中指定更多的计算资源(如多个GPU设备)能够显著加速推理过程。例如,通过设置环境变量
CUDA_VISIBLE_DEVICES
来启用多个GPU设备参与运算。 - CPU与GPU分配:合理调整GPU和CPU的分配比例,以充分利用硬件资源。在某些情况下,增加CPU的使用可以减少GPU的负担,从而提高整体性能。
- GPU加速:确保已经安装并配置好支持GPU加速的Python环境。对于DeepSeek模型而言,在启动命令中指定更多的计算资源(如多个GPU设备)能够显著加速推理过程。例如,通过设置环境变量
-
模型加载与配置优化:
- 模型层数调整:根据本地硬件条件,调整模型加载的层数。在显存有限的情况下,适当减少模型层数可以避免内存溢出(OOM)错误,同时提高运行速度。
- 参数调整:通过调整
num_gpu
、num_ctx
等参数来优化模型性能。例如,增加num_ctx
的值可以扩大上下文窗口的大小,从而提高模型的生成能力;而调整num_gpu
的值可以优化模型在GPU上的加载和运行效率。
-
数据管道优化:
- 批量加载:采用批量加载方式提交待预测样本给模型,可以减少每次调用间的开销时间。
- 数据预处理:提前完成必要的转换操作,如文本清洗、分词等,以减少模型处理数据的负担。
-
使用优化工具与框架:
- IPEX-LLM:对于使用Intel GPU的用户,可以考虑使用IPEX-LLM框架来加速模型推理。IPEX-LLM是英特尔团队开发的一个本地大语言模型推理加速框架,支持大多数主流AI大模型。
- 自动化混合精度:引入FP16半精度浮点数代替传统FP32,可以有效降低内存占用量以及缩短前向传播所需周期数目。现代框架如TensorFlow或PyTorch都支持自动混合同步机制实现这一点。
-
监控与调优:
- 性能监控:定期收集有关查询延迟率、吞吐量等方面的关键绩效指数(KPI),并与未采用任何优化手段前后的历史记录做对比分析,以评估当前策略的有效性和合理性。
- 持续调优:根据性能监控结果,不断调整和优化模型参数和配置,以达到最佳性能。
通过以上方法的综合运用,可以有效提高Ollama中DeepSeek模型的运行速度。